H(t)=-16t^2+17t+3

Simple and best practice solution for H(t)=-16t^2+17t+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+17t+3 equation:



(H)=-16H^2+17H+3
We move all terms to the left:
(H)-(-16H^2+17H+3)=0
We get rid of parentheses
16H^2-17H+H-3=0
We add all the numbers together, and all the variables
16H^2-16H-3=0
a = 16; b = -16; c = -3;
Δ = b2-4ac
Δ = -162-4·16·(-3)
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{7}}{2*16}=\frac{16-8\sqrt{7}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{7}}{2*16}=\frac{16+8\sqrt{7}}{32} $

See similar equations:

| 6.5-0.9n=-4.12 | | 15k+3k-6k+k-12k=15 | | 5(x+15)-2(x+9)=15 | | 6x=5x=11 | | 12(5x-2)=108x | | x+30=-45 | | 8v+5=-11 | | 7^m=70 | | ?x21=78 | | 33x-1+32x+1=180 | | 4(x+6)+2(-x+8)=6 | | -3+2=5x-30 | | 15=6b+9 | | 4x+3x=-42 | | 11r-r+2r-6r-3r=3 | | 3(x+20)-2(-x+5)=0 | | 9(6n+2)=18-7n | | x²+12x+54=0 | | -3(5x-2=+3=84 | | 2(x+8)+2(x+4)=-12 | | 6x+8+82=5x+8 | | -6a*3=-3(4a+1) | | 10a-8-4a=22 | | -9=12x+3 | | 2(4x+3)+7x=5=(3x+1)-3 | | -2(7u-8)+2u=6(u+5) | | x^-2-4=77 | | 6j-2j-j=15 | | -17x+135=180 | | 4x=-40+8 | | -9x+15=33-9(x+2) | | 10x+8-3x=23 |

Equations solver categories